This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*Memos:
- My post explains Pooling Layer.
- My post explains requires_grad.
MaxPool1d() can get the 2D or 3D tensor of the one or more values computed by 1D max pooling from the 2D or 3D tensor of one or more elements as shown below:
*Memos:
- The 1st argument for initialization is
kernel_size(Required-Type:intortupleorlistofint). *It must be1 <= x. - The 2nd argument for initialization is
stride(Optional-Default:kernel_size-Type:intortupleorlistofint). *It must be1 <= x. - The 3rd argument for initialization is
padding(Optional-Default:0-Type:intortupleorlistofint). *It must be0 <= x. - The 4th argument for initialization is
dilation(Optional-Default:1-Type:intortupleorlistofint). *It must be1 <= x. - The 5th argument for initialization is
return_indices(Optional-Default:False-Type:bool). - The 6th argument for initialization is
ceil_mode(Optional-Default:False-Type:bool). - The 1st argument is
input(Required-Type:tensoroffloat). - The tensor’s
requires_gradwhich isFalseby default is not set toTruebyMaxPool1d().
import torch
from torch import nn
tensor1 = torch.tensor([[8., -3., 0., 1., 5., -2.]])
tensor1.requires_grad
# False
maxpool1d = nn.MaxPool1d(kernel_size=1)
tensor2 = maxpool1d(input=tensor1)
tensor2
# tensor([[8., -3., 0., 1., 5., -2.]])
tensor2.requires_grad
# False
maxpool1d
# MaxPool1d(kernel_size=1, stride=1, padding=0, dilation=1, ceil_mode=False)
maxpool1d.kernel_size
# 1
maxpool1d.stride
# 1
maxpool1d.padding
# 0
maxpool1d.dilation
# 1
maxpool1d.return_indices
# False
maxpool1d.ceil_mode
# False
maxpool1d = nn.MaxPool1d(kernel_size=1, stride=None, padding=0,
dilation=1, return_indices=False, ceil_mode=False)
maxpool1d(input=tensor1)
# tensor([[8., -3., 0., 1., 5., -2.]])
maxpool1d = nn.MaxPool1d(kernel_size=2, return_indices=True)
maxpool1d(input=tensor1)
# (tensor([[8., 1., 5.]]), tensor([[0, 3, 4]]))
maxpool1d = nn.MaxPool1d(kernel_size=3, return_indices=True)
maxpool1d(input=tensor1)
# (tensor([[8., 5.]]), tensor([[0, 4]]))
maxpool1d = nn.MaxPool1d(kernel_size=4, return_indices=True)
maxpool1d(input=tensor1)
# (tensor([[8.]]), tensor([[0]]))
maxpool1d = nn.MaxPool1d(kernel_size=5, return_indices=True)
maxpool1d(input=tensor1)
# (tensor([[8.]]), tensor([[0]]))
maxpool1d = nn.MaxPool1d(kernel_size=6, return_indices=True)
maxpool1d(input=tensor1)
# (tensor([[8.]]), tensor([[0]]))
my_tensor = torch.tensor([[8., -3., 0.],
[1., 5., -2.]])
maxpool1d = nn.MaxPool1d(kernel_size=1, return_indices=True)
maxpool1d(input=my_tensor)
# (tensor([[8., -3., 0.],
# [1., 5., -2.]]),
# tensor([[0, 1, 2],
# [0, 1, 2]]))
maxpool1d = nn.MaxPool1d(kernel_size=2, return_indices=True)
maxpool1d(input=my_tensor)
# (tensor([[8.],
# [5.]]),
# tensor([[0],
# [1]]))
maxpool1d = nn.MaxPool1d(kernel_size=3, return_indices=True)
maxpool1d(input=my_tensor)
# (tensor([[8.],
# [5.]]),
# tensor([[0],
# [1]]))
my_tensor = torch.tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])
maxpool1d = nn.MaxPool1d(kernel_size=1, return_indices=True)
maxpool1d(input=my_tensor)
# (tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]]),
# tensor([[0], [0], [0], [0], [0], [0]]))
maxpool1d = nn.MaxPool1d(kernel_size=1, return_indices=True)
maxpool1d(input=my_tensor)
# (tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]]),
# tensor([[0], [0], [0], [0], [0], [0]]))
my_tensor = torch.tensor([[[8.], [-3.], [0.]],
[[1.], [5.], [-2.]]])
maxpool1d = nn.MaxPool1d(kernel_size=1, return_indices=True)
maxpool1d(input=my_tensor)
# (tensor([[[8.], [-3.], [0.]],
# [[1.], [5.], [-2.]]]),
# tensor([[[0], [0], [0]],
# [[0], [0], [0]]]))
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
