This content originally appeared on DEV Community and was authored by Vansh Saxena
Building AI Agents: Architecture, Tools & Implementation Guide
AI Agents are revolutionizing how we interact with software. Unlike simple chatbots, these autonomous systems can plan, execute tasks, and make decisions. Let’s dive deep into the technology.
What Are AI Agents?
AI Agents are autonomous programs that:
- Perceive their environment through APIs and data sources
- Reason about actions using LLMs
- Act by calling tools and functions
- Learn from feedback and outcomes
Core Architecture Components
1. LLM Brain (Reasoning Engine)
# Example: Using OpenAI for reasoning
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an AI agent that can use tools"},
{"role": "user", "content": "Book a flight to NYC"}
],
tools=[flight_search_tool, booking_tool]
)
2. Memory System
- Short-term: Conversation context
- Long-term: Vector databases (Pinecone, Chroma, Qdrant)
- Working memory: Current task state
# Vector memory example
from chromadb import Client
client = Client()
collection = client.create_collection("agent_memory")
# Store interaction
collection.add(
documents=["User prefers morning flights"],
metadatas=[{"type": "preference"}],
ids=["pref_1"]
)
3. Tool Integration Layer
# Function calling schema
tools = [
{
"type": "function",
"function": {
"name": "search_flights",
"description": "Search for available flights",
"parameters": {
"type": "object",
"properties": {
"origin": {"type": "string"},
"destination": {"type": "string"},
"date": {"type": "string"}
},
"required": ["origin", "destination", "date"]
}
}
}
]
4. Planning & Execution Engine
class AgentExecutor:
def __init__(self, llm, tools):
self.llm = llm
self.tools = tools
def execute(self, task):
# 1. Plan
plan = self.llm.create_plan(task)
# 2. Execute steps
for step in plan:
tool = self.select_tool(step)
result = tool.execute(step.params)
# 3. Reflect
if not self.validate(result):
self.replan(step, result)
return final_result
Popular AI Agent Frameworks
LangChain
from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI
tools = [
Tool(
name="Calculator",
func=calculator.run,
description="Useful for math calculations"
)
]
agent = initialize_agent(
tools,
OpenAI(temperature=0),
agent="zero-shot-react-description"
)
agent.run("What is 25 * 4 + 10?")
AutoGPT Pattern
class AutoGPTAgent:
def run(self, goal):
while not self.goal_achieved(goal):
# 1. Think
thoughts = self.llm.generate_thoughts(goal, self.memory)
# 2. Reason
action = self.llm.decide_action(thoughts)
# 3. Act
result = self.execute_action(action)
# 4. Criticize
self.memory.add(result)
self.evaluate_progress(goal)
ReAct (Reasoning + Acting)
Thought: I need to find the weather in NYC
Action: search_weather(location="New York")
Observation: Temperature is 72°F, sunny
Thought: Now I should check if user needs umbrella
Action: analyze_weather(temp=72, condition="sunny")
Observation: No umbrella needed
Answer: It's 72°F and sunny in NYC. No umbrella needed!
Key Technologies & Tools
Vector Databases
- Pinecone: Managed, scalable
- Weaviate: Open-source, GraphQL
- Qdrant: Rust-based, fast
- Chroma: Lightweight, embedded
LLM Providers
- OpenAI: GPT-4, function calling
- Anthropic: Claude 3.5, tool use
- Google: Gemini 2.0, multimodal
- Open-source: Llama 3, Mistral
Orchestration
- LangChain: Python/JS framework
- LlamaIndex: Data-focused agents
- Semantic Kernel: Microsoft’s framework
- Haystack: NLP pipelines
Real-World Implementation
Example: Customer Support Agent
from langchain.agents import AgentExecutor
from langchain.tools import Tool
class SupportAgent:
def __init__(self):
self.tools = [
Tool(
name="search_knowledge_base",
func=self.search_kb,
description="Search company knowledge base"
),
Tool(
name="create_ticket",
func=self.create_ticket,
description="Create support ticket"
),
Tool(
name="check_order_status",
func=self.check_order,
description="Check order status by ID"
)
]
def search_kb(self, query):
# Vector search in knowledge base
results = vector_db.similarity_search(query, k=3)
return results
def create_ticket(self, issue):
# Create ticket in system
ticket_id = ticketing_system.create(issue)
return f"Ticket {ticket_id} created"
Advanced Patterns
Multi-Agent Systems
class MultiAgentSystem:
def __init__(self):
self.researcher = ResearchAgent()
self.writer = WriterAgent()
self.critic = CriticAgent()
def collaborate(self, task):
# Research phase
research = self.researcher.gather_info(task)
# Writing phase
draft = self.writer.create_content(research)
# Review phase
feedback = self.critic.review(draft)
# Iterate until approved
while not feedback.approved:
draft = self.writer.revise(draft, feedback)
feedback = self.critic.review(draft)
return draft
Tool Creation Pattern
def create_tool_from_api(api_spec):
"""Dynamically create tools from OpenAPI specs"""
@tool
def dynamic_tool(params: dict):
"""Auto-generated tool from API"""
response = requests.post(
api_spec.endpoint,
json=params,
headers=api_spec.headers
)
return response.json()
return dynamic_tool
Performance Optimization
Caching Strategy
from functools import lru_cache
@lru_cache(maxsize=1000)
def cached_llm_call(prompt, model):
return llm.generate(prompt, model)
Parallel Tool Execution
import asyncio
async def execute_tools_parallel(tools, params):
tasks = [tool.execute_async(param)
for tool, param in zip(tools, params)]
results = await asyncio.gather(*tasks)
return results
Challenges & Solutions
Hallucination Prevention
- Use function calling for structured outputs
- Implement validation layers
- Add confidence scoring
- Enable human-in-the-loop for critical actions
Cost Management
- Cache frequent queries
- Use smaller models for simple tasks
- Implement token budgets
- Batch similar requests
Security
- Sandbox tool execution
- Validate all inputs
- Rate limiting
- Audit logs for all actions
Future Trends
- Autonomous Agents: Self-improving systems
- Multi-modal Agents: Vision + audio + text
- Swarm Intelligence: Coordinated agent teams
- Edge Agents: Running locally on devices
- Specialized Agents: Domain-specific experts
Getting Started
# Install dependencies
pip install langchain openai chromadb
# Basic agent setup
from langchain.agents import create_openai_functions_agent
agent = create_openai_functions_agent(
llm=ChatOpenAI(model="gpt-4"),
tools=your_tools,
prompt=your_prompt
)
executor = AgentExecutor(agent=agent, tools=your_tools)
result = executor.invoke({"input": "Your task here"})
Conclusion
AI Agents represent the next evolution in software. By combining LLMs with tools, memory, and planning capabilities, we can build systems that truly understand and act on user intent.
Key Takeaways:
- Start with simple ReAct patterns
- Build robust tool integrations
- Implement proper memory systems
- Focus on reliability and safety
- Iterate based on real usage
Ready to build your first AI agent? Start experimenting today!
Resources:
- LangChain Docs: https://docs.langchain.com
- OpenAI Function Calling: https://platform.openai.com/docs
- Agent Examples: https://github.com/langchain-ai/langchain
AIAgents #LLM #MachineLearning #Python #LangChain #OpenAI #SoftwareEngineering #AI #TechTutorial #Automation
This content originally appeared on DEV Community and was authored by Vansh Saxena