AugMix in PyTorch (7)



This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee☕

*Memos:

AugMix() can randomly do AugMix to an image as shown below. *It’s about mixture_width argument (3):

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

mw0a50_data = OxfordIIITPet( # `mw` is mixture_width and `a` is alpha.
    root="data",
    transform=AugMix(mixture_width=0, alpha=50.0)
)

mw1a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(mixture_width=1, alpha=50.0)
)

mw2a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(mixture_width=2, alpha=50.0)
)

mw5a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(mixture_width=5, alpha=50.0)
)

mw10a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(mixture_width=10, alpha=50.0)
)

mw25a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(mixture_width=25, alpha=50.0)
)

mw50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(mixture_width=50, alpha=50.0)
)

s10mw0cd50a50_data = OxfordIIITPet( # `s` is severity and `cd` is chain_depth.
    root="data",
    transform=AugMix(severity=10, mixture_width=0, chain_depth=50, alpha=50.0)
)

s10mw1cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=1, chain_depth=50, alpha=50.0)
)

s10mw2cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=2, chain_depth=50, alpha=50.0)
)

s10mw5cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=5, chain_depth=50, alpha=50.0)
)

s10mw10cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=10, chain_depth=50, alpha=50.0)
)

s10mw25cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=25, chain_depth=50, alpha=50.0)
)

s10mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50, chain_depth=50, alpha=50.0)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=mw0a50_data, main_title="mw0a50_data")
show_images1(data=mw1a50_data, main_title="mw1a50_data")
show_images1(data=mw2a50_data, main_title="mw2a50_data")
show_images1(data=mw5a50_data, main_title="mw5a50_data")
show_images1(data=mw10a50_data, main_title="mw10a50_data")
show_images1(data=mw25a50_data, main_title="mw25a50_data")
show_images1(data=mw50a50_data, main_title="mw50a50_data")
print()
show_images1(data=s10mw0cd50a50_data, main_title="s10mw0cd50a50_data")
show_images1(data=s10mw1cd50a50_data, main_title="s10mw1cd50a50_data")
show_images1(data=s10mw2cd50a50_data, main_title="s10mw2cd50a50_data")
show_images1(data=s10mw5cd50a50_data, main_title="s10mw5cd50a50_data")
show_images1(data=s10mw10cd50a50_data, main_title="s10mw10cd50a50_data")
show_images1(data=s10mw25cd50a50_data, main_title="s10mw25cd50a50_data")
show_images1(data=s10mw50cd50a50_data, main_title="s10mw50cd50a50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
                 ao=True, ip=InterpolationMode.BILINEAR, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
                        alpha=a, all_ops=ao, interpolation=ip, fill=f)
            plt.imshow(X=am(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="mw0a50_data", mw=0, a=50.0)
show_images2(data=origin_data, main_title="mw1a50_data", mw=1, a=50.0)
show_images2(data=origin_data, main_title="mw2a50_data", mw=2, a=50.0)
show_images2(data=origin_data, main_title="mw5a50_data", mw=5, a=50.0)
show_images2(data=origin_data, main_title="mw10a50_data", mw=10, a=50.0)
show_images2(data=origin_data, main_title="mw25a50_data", mw=25, a=50.0)
show_images2(data=origin_data, main_title="mw50a50_data", mw=50, a=50.0)
print()
show_images2(data=origin_data, main_title="s10mw0cd50a50_data", s=10, mw=0,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s10mw1cd50a50_data", s=10, mw=1,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s10mw2cd50a50_data", s=10, mw=2,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s10mw5cd50a50_data", s=10, mw=5,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s10mw10cd50a50_data", s=10, mw=10,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s10mw25cd50a50_data", s=10, mw=25,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s10mw50cd50a50_data", s=10, mw=50,
             cd=50, a=50.0)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)