This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
nan_to_num() can get the 0D or more D tensor of zero or more elements, replacing zero or more NaNs(Not a Numbers), positive infinities and negative infinities with zero or more zeros, the greatest finities and the least finities respectively(Default) or specified values from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
nan_to_num()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isnan
(Optional-Default:Zero
-Type:int
,float
orbool
). - The 3rd argument with
torch
or the 2nd argument with a tensor isposinf
(Optional-Default:The greatest finite
-Type:int
,float
orbool
). - The 4th argument with
torch
or the 2nd argument with a tensor isneginf
(Optional-Default:The lowest finite
-Type:int
,float
orbool
). - There is
out
argument withtorch
(Optional-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
import torch
my_tensor = torch.tensor([float('-inf'), 7., -5., float('inf'),
8., float('nan'), float('inf'), float('nan')])
torch.nan_to_num(input=my_tensor)
my_tensor.nan_to_num()
# tensor([-3.4028e+38, 7.0000e+00, -5.0000e+00, 3.4028e+38,
# 8.0000e+00, 0.0000e+00, 3.4028e+3, 0.0000e+00])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([9., 7., -5., -6., 8., 2., -6., 2.])
my_tensor = torch.tensor([[float('-inf'), 7., -5., float('inf')],
[8., float('nan'), float('inf'), float('nan')]])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([[9., 7., -5., -6.],
# [8., 2., -6., 2.]])
my_tensor = torch.tensor([[[float('-inf'), 7.],
[-5., float('inf')]],
[[8., float('nan')],
[float('inf'), float('nan')]]])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([[[9., 7.],
# [-5., -6.]],
# [[8., 2.],
# [-6., 2.]]])
my_tensor = torch.tensor([complex('-inf+infj'), 7.+0.j,
-5.+0.j, complex('inf-infj'),
8.+0.j, complex('nan+nanj'),
complex('inf'), float('nan')])
torch.nan_to_num(input=my_tensor)
# tensor([-3.4028e+38+3.4028e+38j, 7.0000e+00+0.0000e+00j,
# -5.0000e+00+0.0000e+00j, 3.4028e+38-3.4028e+38j,
# 8.0000e+00+0.0000e+00j, 0.0000e+00+0.0000e+00j,
# 3.4028e+38+0.0000e+00j, 0.0000e+00+0.0000e+00j])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([9.-6.j, 7.+0.j,
# -5.+0.j, -6.+9.j,
# 8.+0.j, 2.+2.j,
# -6.+0.j, 2.+0.j])
my_tensor = torch.tensor([[complex('-inf+infj'), 7.+0.j,
-5.+0.j, complex('inf-infj')],
[8.+0.j, complex('nan+nanj'),
complex('inf'), float('nan')]])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([[9.-6.j, 7.+0.j,
# -5.+0.j, -6.+9.j],
# [8.+0.j, 2.+2.j,
# -6.+0.j, 2.+0.j]])
my_tensor = torch.tensor([[[complex('-inf+infj'), 7.+0.j],
[-5.+0.j, complex('inf-infj')]],
[[8.+0.j, complex('nan+nanj')],
[complex('inf'), float('nan')]]])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([[[9.-6.j, 7.+0.j],
# [-5.+0.j, -6.+9.j]],
# [[8.+0.j, 2.+2.j],
# [-6.+0.j, 2.+0.j]]])
my_tensor = torch.tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]])
torch.nan_to_num(input=my_tensor, nan=2, posinf=-6, neginf=9)
# tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]])
my_tensor = torch.tensor([[[True, False], [True, False]],
[[False, True], [False, True]]])
torch.nan_to_num(input=my_tensor, nan=True, posinf=False, neginf=True)
# tensor([[[True, False], [True, False]],
# [[False, True], [False, True]]])
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)